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Instability of coupled density fronts, and its fully nonlinear evolution are studied
within the idealized reduced-gravity rotating shallow-water model. By using the
collocation method, we benchmark the classical stability results on zero potential
vorticity (PV) fronts and generalize them to non-zero PV fronts. In both cases, we
find a series of instability zones intertwined with the stability regions along the along-
front wavenumber axis, the most unstable modes being long wave. We then study the
nonlinear evolution of the unstable modes with the help of a high-resolution well-
balanced finite-volume numerical scheme by initializing it with the unstable modes
found from the linear stability analysis. The most unstable long-wave mode evolves
as follows: after a couple of inertial periods, the coupled fronts are pinched at some
location and a series of weakly connected co-rotating elliptic anticyclonic vortices is
formed, thus totally changing the character of the flow. The characteristics of these
vortices are close to known rodon lens solutions. The shorter-wave unstable modes
from the next instability zones are strongly concentrated in the frontal regions, have
sharp gradients, and are saturated owing to dissipation without qualitatively changing
the flow pattern.

1. Introduction
Density fronts are ubiquitous in the ocean (Gill 1982). Understanding their dynamics

is of obvious importance for comprehension of transport and mixing of mass and
momentum. A particular but frequently observed case corresponds to fronts with
isopycnals intersecting with the free surface or with the bottom, i.e. outcropping or
incropping fronts, respectively. A pair of adjacent outcropping (incropping) fronts
with density gradients of opposite sign isolate a fluid of particular density from a
surrounding fluid with a different density (Smith 1976; Houghton et al. 1982). We
focus on outcropping/incropping density fronts in the paper and will call them simply
fronts in what follows. Owing to the presence of the Coriolis force, the density fronts
should be accompanied by a corresponding velocity jet perpendicular to the density
gradients. In the geostrophically balanced (or simply geostrophic) fronts, the Coriolis
force and the pressure force are in equilibrium. Such fronts, if they are straight, are
exact solutions of the equations of motion (see below). The question of stability of
these solutions is of double importance. Besides the stability per se, it may be put
in the context of the fundamentals in the geophysical fluid dynamics geostrophic
adjustment problem (e.g. Reznik, Zeitlin & Ben Jelloul 2001). Namely, starting from
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a configuration close to an unstable solution, the question arises as to what will be
the end state of the relaxation to the geostrophic equilibrium?

A widely used idealized model for studying dynamics of density fronts is
the reduced-gravity rotating shallow-water model, where the effects of density
stratification are incorporated in the modified (‘reduced’) gravity parameter, and
the system is modelled by a single-layer finite-depth constant-density fluid. The front
corresponds to the fluid terminating at the free streamline (e.g. Killworth 1983a), which
may be closed (a lens configuration much studied in the literature, Killworth 1983b;
Cushman-Roisin 1985; Ripa 1987). Coupled density fronts correspond to a band of
fluid between two free streamlines (see Griffiths, Killworth & Stern (1982) or more
recent references e.g. Rubino, Dotsenko & Brandt 2003). The outcropping/incropping
phenomenon is modelled by the fluid terminating at the free streamline with finite
slope of the free surface. The model is well-suited for studying the basic dynamics. It
obviously neglects the dissipative effects such as Ekman pumping, and oversimplifies
stratification. The former may be, in principle, parameterized, for the sake of
applications, and the second may be taken into account by using, for example, a
two-layer model. In what follows, we will, however, use the simplest version of the
model, as in the classical paper by Griffiths et al. (1982) which will allow us (i)
to complete their stability analysis, and (ii) to understand the nonlinear stage of
instability.

The simplest form of the depth profile of the coupled fronts is parabolic. It is easy
to see that the corresponding balanced jet has a linear horizontal shear. In what
follows, we will focus on this simplest configuration, which may be called the free-
streamline rotating shallow-water Couette flow. The classical plane-parallel Couette
flow is known to be linearly stable to all infinitesimal perturbations (Drazin & Reid
1981), which is not the case for its (non-rotating) shallow-water counterpart (Knessl
& Keller 1995) between the rigid boundaries. In the present case, we have in addition
the effects of rotation and free boundaries.

The linear stability of coupled density fronts with parabolic profile within one-
and two-layer reduced-gravity models has been studied in the literature, especially
in the particular case of zero potential vorticity (PV), which allows for considerable
technical simplification. As was shown by Griffiths et al. (1982), the coupled fronts
with zero-PV are linearly unstable to infinitesimal perturbations with small but finite
wavenumbers. Paldor & Ghil (1990) confirmed this result and also found new unstable
wavenumber intervals separated by the stability zones for zero-PV fronts; however,
they did not display the structure of the new unstable modes. In both papers ad hoc
zero-PV methods were used for linear stability analysis. Griffiths et al. (1982) also gave
theoretical arguments for instability of arbitrary (with non-zero PV) coupled density
fronts with respect to linearized perturbations with small wavenumbers. In their
laboratory experiments, a circular current of buoyant fluid above a deep lower layer
was observed to be always unstable, forming a sequence of vortices at the late stages of
evolution. It should be noted also that the difference between two-layer and one-layer
stability results is mainly the appearance of the short-wave Kelvin–Helmholtz-type
instabilities in the former case (Paldor & Ghil 1990), without qualitative changes of
the long-wave part of the spectrum which we will be interested in in what follows.

Below, we present a detailed linear stability analysis of the coupled fronts without
limiting ourselves by the zero-PV assumption. We use the recent version of the
collocation method for linear stability analysis and we benchmark our method by
reproducing earlier results on the position of the instability zones and growth rates.
We also obtain the detailed structure of the unstable modes for successive instability
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zones. After having established the full stability diagram, and confirmed the existence
of multiple instability zones with their proper patterns of unstable modes, we perform
fully nonlinear high-resolution simulations of the nonlinear stage of instability starting
from the coupled fronts perturbed by the unstable mode. We find a specific ‘barotropic’
breaking, and a complete spatio-temporal reorganization of the flow during the
nonlinear evolution of the most unstable long-wave perturbations, while shorter-wave
unstable modes from the next instability zones are saturated owing to dissipation
without changing the character of the flow.

The paper is organized as follows. After a brief reminder of the rotating shallow-
water model and the collocation method in § 2, we present the results of the linear
stability analysis in § 3. The nonlinear evolution of the coupled geostrophic fronts
perturbed by the unstable modes is presented in § 4. The results are summarized and
discussed in § 5. In the Appendix, we briefly present for comparison the results of
linear and nonlinear analyses of the frontal configuration with smoothed outcropping,
i.e. fluid terminating at the free boundary with zero slope of the free surface.

2. The model and the linear stability problem
2.1. The model

The equations of the rotating shallow-water model on the f -plane are:

ut + uux + vuy − f v = −ghx, (2.1a)

vt + uvx + vvy + f u = −ghy, (2.1b)

ht + (hu)x + (hv)y = 0, (2.1c)

where u(x, y, t) is the zonal velocity, v(x, y, t) is the meridional velocity, h(x, y, t) is
the fluid depth, f is the Coriolis parameter which we assume to be constant and
positive, g is the reduced gravity and the subscripts denote corresponding partial
derivatives. We neglect the effects of viscosity and diffusion in the linear stability
analysis. The PV is defined as q =(vx − uy + f ) / h. It is a Lagrangian invariant of
the model: dq/dt = 0.

The geostrophic balance corresponds to equilibrium between the Coriolis force and
the pressure force in (2.1a) and (2.1b). The straight balanced front, i.e. a geostrophically
balanced configuration without dependence on one of the coordinates (say y) is an
exact stationary solution of (2.1).

We study stability of a specific geostrophically balanced jet with a parabolic profile:
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(2.2)

We thus have a free-boundary problem, the bounding streamlines at rest being
situated at x = −L and x = +L. The fluid terminates with a non-zero slope of the
free surface at the boundaries (‘drying’), which is a simple, but widely used model of
outcroppings/incroppings occurring in the real ocean (see e.g. Griffiths et al. 1982;
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Figure 1. The reduced gravity rotating shallow water configuration which models the
incropping/outcropping fronts: a layer of fluid of width L/2 and maximum depth H0/2
on the rotating plane with Coriolis parameter f and the reduced gravity g.

Killworth 1983a ,b; Rubino et al. 2003). The basic configuration is schematically
presented in figure 1.

The PV of the flow (2.2) is:

q =
Vx + f

H
=

−(gH0/f L2) + f
1
2
H0(1 − (x/L)2)

, (2.3)

and vanishes when Vx = −f , i.e. gH0/f L2 = f . Note that in the opposite case, PV is
necessarily singular at the free streamlines. This, however, does not pose a problem,
unless we use PV as a dynamical variable which is not the case below.

The general criteria of linear stability of the rotating shallow-water flows were
established in the classical paper by Ripa (1983): the flow is stable with respect to
infinitesimal perturbations if there exists a value of the parameter α such that simul-
taneously [V (x)−α] ∂xq(x) � 0 and [V (x)−α]2 � gH (x) for all x. It is easy to see that
Ripa’s criteria are not satisfied for the flow (2.2). The first criterion can be written as:(

−gH0

f L2
+ f

)
4

H0L2(1 − (x/L)2)2

[
− αx − gH0

f L2
x2

]
� 0, (2.4)

and can be verified only if α = 0 and gH0/f
2L2 � 1. The second criterion in the case

α = 0 becomes:

0 � 1 −
( x

L

)2

− 2 gH0

f 2L4
x2, (2.5)

and is never verified on the interval: |x| ∈]L/(1 + 2gH0/(f
2L2))1/2, L].

We start with a linear stability analysis of the solution (2.2) by benchmarking the
results of Griffiths et al. (1982) and Paldor & Ghil (1990) which were obtained by the
ad hoc zero-PV method, and then extend them to the non-zero-PV case, where only
the long-wave limit was previously approached (Griffiths et al. 1982).

We consider small perturbations of the jet (2.2):

h = H + h′, u = u′, v = V + v′, (2.6)

and non-dimensionalize the problem with a horizontal length scale L (the half-width
of the unpertubed jet), a vertical length scale H0 (the double of the maximum depth
of the unperturbed jet), the inverse of the inertial frequency as the time scale, and the
velocity scale f L. The non-dimensionalized equations are:

ũt̃ + ũũx̃ + ṽũỹ − ṽ = −Bu h̃x̃ , (2.7a)

ṽt̃ + ũṽx̃ + ṽṽỹ + ũ = −Bu h̃ỹ , (2.7b)

h̃t̃ + (h̃ũ)x̃ + (h̃ṽ)ỹ = 0, (2.7c)
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where Bu = gH0/f
2L2 is the Burger number, the only non-dimensional parameter

governing the problem, and non-dimensional quantities are denoted by a tilde. The
background jet is given by:

H̃ (x̃) = 1
2
(1 − x̃2),

Ṽ (x̃) = −Bu x̃.

}
(2.8)

Thus, Bu = 1 corresponds to the zero-PV jet. We will omit the tildes and the primes
in what follows when this does not lead to confusion. Looking for solutions of the
non-dimensionalized linearized equations in the form (u, v, h) = (u0(x), v0(x), h0(x))
ei (k y−ω t), we obtain:

i (k V (x) − ω) u0 − v0 + Bu hx = 0, (2.9a)

i (k V (x) − ω) v0 + (1 + V (x)x) u0 + Bu i k h0 = 0, (2.9b)

i (k V (x) − ω) h0 + (u0 H (x))x + i k H (x) v0 = 0. (2.9c)

This is a free-boundary eigenproblem for eigenvalues ω and eigenvectors (u0, v0, h0).
Complex eigenvalues correspond to instabilities.

The boundary conditions are:

H (x) + h = 0,
dL±

dt
= u at x = L± = ±1 + λ±, (2.10)

where ±1 are the locations of the free streamlines of the balanced jet and λ±(y, t) are
the perturbations of the free streamlines. Physically, they correspond to the conditions
that the fluid terminates at the boundaries which are the material lines. The linearized
boundary conditions give:

(a) the relation between the perturbation of the positions of the free streamlines
and the value of the height perturbation:

λ± = − h0

Hx

∣∣∣∣
x=±1

, (2.11)

(b) the continuity equation (2.9c) evaluated at x = ±1.
Hence, the only constraint to impose on the solutions of (2.9) is regularity of (u0, v0, h0)
at x = ±1.

The eigenproblem (2.9) is solved with the help of the collocation method, which
has the advantage of allowing us to treat any potential vorticity profile for the basic
flow and perturbations with arbitrary wavenumber, whereas in the previous works,
Griffiths et al. (1982) dealt only with small wavenumbers and Paldor & Ghil (1990)
analysed only the zero-PV case. The disadvantage of the method is that it is not
specially designed for treating singular eigenproblems. Indeed, the eigenproblem (2.9)
has a well-known critical-layer singularity occurring whenever the real part of the
eigen phase velocity of the perturbation c = ω/k is equal to the local flow velocity:
c = V (x). Singularities give rise to the stable singular eigenmodes which form a
continuous spectrum; see e.g. Vanneste (1998) for a similar albeit simpler geophysical
fluid dynamics problem with critical layers. These modes have Dirac-delta or step-
function behaviour (depending on the variable) being, in fact distributions, not
functions. Discrete counterparts of such singular eigenmodes will be retrieved by the
straightforward collocation method. They may be, nevertheless, easily identified by
their singular profiles and the fact that they accumulate with increasing resolution
(see below). As the non-dimensional velocity of the flow (2.8) takes values between
−Bu and +Bu, critical levels should appear in the interval c ∈ [−Bu, Bu]. A filtering
procedure based on gradient limiters was applied to eliminate these pseudo-modes.
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It should be noted that the collocation method was previously applied by
Le Sommer, Scherer & Zeitlin (2006) to the problem of stability of the coupled
density fronts on the equatorial tangent plane. However, a substantial simplification
there was the constant, and not sheared, profile of the background velocity owing to
vanishing of the Coriolis force at the equator. Hence, only one critical level appeared
and was easy to deal with. The results obtained below demonstrate the efficiency of
the collocation method for problems with critical layers.

2.2. A reminder of the collocation method for the eigenvalue problems

In order to solve the free-boundary eigenproblem (2.9), we use the pseudospectral
collocation method (Trefethen 2000) in the form which was recently applied by
Poulin & Flierl (2003) and Le Sommer et al. (2006). The system (2.9) on the
interval −1 � x � 1 is discretized on the irregular grid formed by the Chebyshev
collocation points, which are unevenly spaced to avoid the Runge phenomenon:
xj = cos(jπ/N), j = 0, 1, . . . , N . The Chebyshev differentiation matrix, which will
be denoted D, is used as discrete differentiation. The discretized version of the system
(2.9) thus follows:⎛

⎝ kV −1 Bu D
(−1 − Vx) kV Bu k

(−Hx − HD) kH kV

⎞
⎠

⎛
⎝u00

v0

h0

⎞
⎠ =ω

⎛
⎝u00

v0

h0

⎞
⎠ , (2.12)

where for convenience we use u00 = iu0. A complete solution of (2.12) with the
standard Matlab routine ‘eig’ is computed in a few seconds on a personal computer.

3. The results of the linear stability analysis
3.1. Benchmark of the earlier results for flows with zero potential vorticity, Bu = 1

We start with the analysis of the zero-PV case. The real part of the eigen phase-
velocities and the imaginary part of the eigenfrequencies (growth rates) as functions
of the wavenumber are presented in figure 2. The gradient-limiter filtering is applied
in figure 2(a) in order to eliminate the pseudo-modes (discrete analogues of singular
modes), which fill the band [0, 1] and accumulate with increasing resolution (we
present only the positive c = Re(ω)/k, Im (ω) part of the graphs, the full ones are
obtained by reflection with respect to the abscissa). The typical cross-stream profiles
corresponding to a pseudo-mode are presented in figure 3: their main feature is the
jump in the along-jet velocity v.

As usual, the instabilities appear when two branches of the dispersion relation
for the normal modes intersect, or when the real part of the phase velocity of a
mode vanishes (e.g. Hayashi & Young 1987; Sakai 1989). The highest growth rates
are found in the small-wavenumber range; however, smaller instability zones exist at
higher wavenumbers. We present the cross-stream structure of the most unstable mode
in figure 4, and the structure of the associated perturbations of both free streamlines,
as calculated from the boundary conditions (2.11), in figure 5. It should be noted that
the border streamlines have a significant phase shift, which will be important in the
nonlinear evolution of the instability (see below). It is also worth mentioning that,
as we checked (not shown), for all instability zones of figure 2, the instability wave
pattern is of the type in figure 5, i.e. it is a combination of meandering and varicosity.
The structure of the most unstable mode in the second zone of instability is presented
in figure 6(a). An enlargement of the rightmost instability zone at k ≈ 4.575 in
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Figure 2. (a) The eigenvalues of the positive real part of the phase velocity c and (b) the
growth rate as functions of k for the zero-PV flow Bu =1, N = 400. In the c < 1 part of (a),
the eigenvalues corresponding to the pseudo-modes associated with critical levels are filtered
out. The instabilities in (b) are located where a branch of the phase speed intersects another
one, or when the real part of the phase speed vanishes at (a). An enlargement of the instability
zone at k ≈ 4.575 is given in the inset.
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Figure 3. Cross-stream structure of the discrete analogue of a singular mode,
k = 1.116,Re(ω) = 0.043, Im(ω) = 0, as captured by the collocation method with N = 200.

figure 2 is given in the inset in figure 2 and the structure of the corresponding mode
is given in figure 6(b). The characteristic features of the higher instability modes are
high gradients of the height and velocity fields concentrated in the vicinity of the free
streamlines (the unstable modes in the third zone k ≈ 4.01 have the same structure,
not shown).
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Figure 4. Cross-stream structure of the most unstable mode for the zero potential vorticity
flow (Bu =1) as calculated by the collocation method k = 1.116,Re(ω) = 0, Im(ω) = 0.14,
N = 200.
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Figure 5. The form of the free streamlines of the most unstable mode for the zero-PV flow
Bu = 1, k = 1.116 as derived from the boundary conditions (2.10), (2.11). The steady state
corresponds to straight free streamlines at x = ± 1. The amplitude of the deviation from the
equilibrium position is purposely exaggerated. The two streamlines have a significant phase
shift.
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Figure 6. (a) Cross-stream structure of the most unstable mode in the second zone of
instability (k = 2.77, Re(ω) = 0.89, Im(ω) = 0.03) for the zero-PV flow (Bu =1) as calculated
by the collocation method with N = 200. (b) Cross-stream structure of the unstable mode at
k = 4.575, Re(ω)= 0, Im(ω) = 0.004 for the zero-PV flow, N =200.

3.2. Extension to flows with non-zero potential vorticity, Bu �= 1

As soon as Bu �= 1, the PV becomes non-zero and non-constant. Griffiths, Killworth
& Stern (1982) gave general arguments for the existence of the unstable modes
for arbitrary PV. Below we confirm and quantify this prediction. By repeating the
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Figure 7. (a) Stability diagram in the (Bu, k)-plane. The isolines of Im(ω) at the values 0.05
up to 0.3 by steps of 0.05 are shown. N =200. (b) Growth rates in the main instability zone
as functions of the wavenumber for Bu = 0.5, Bu = 1 (zero-PV flow), and Bu = 1.5. For all
values of Bu, the growth rate at k = 0 vanishes. When Bu increases, the maximum growth
rate increases and the wavenumber corresponding to the most unstable mode diminishes. 20
collocation points are sufficient to obtain the graph (b).

stability analysis for a series of values of the Burger number, we obtained a full
stability diagram in the obtained (Bu, k)-plane. A part of it corresponding to realistic
Burger numbers is presented in figure 7(a). Several instability zones are clearly
visible. The zone with highest growth rates is the one with lowest wavenumbers. It
is the one that was studied in detail by Griffiths et al. (1982). Note that when Bu
increases, the maximum growth rate increases and the wavenumber corresponding
to the maximum growth rate diminishes. The growth rates for different values of the
Burger number as functions of the wavenumber are shown in figure 7(b). The real
parts of the phase velocities display a similar behaviour to the case Bu = 1 (not shown).

4. Nonlinear evolution of the instability
4.1. Finite-volume methods for the rotating shallow-water model

Recent progress in finite-volume numerical schemes for shallow-water equations allows
for implementationally simple and quantitatively reliable high-resolution modelling
of fully nonlinear dynamics. We use this technique for studying nonlinear evolution of
the instabilities of coupled geostrophic density fronts. We apply the high-resolution
finite-volume numerical method by Bouchut (2004, 2007) which has the following
properties crucial in the present context:

(a) it preserves the geostrophic equilibria (i.e. the stationary states in the case of a
straight front);

(b) it resolves wave breaking and shock formation;
(c) it allows us to treat drying.

No explicit dissipation is introduced in the numerical scheme. As was shown in
previous applications (Bouchut, Le Sommer & Zeitlin 2004, 2005) energy is extremely
well-preserved, the only significant energy loss events being associated with sharp
gradient (shock or bore) formation (Bouchut et al. 2004), or with reconnection of the
streamlines (barotropic Rossby wave breaking, Bouchut et al. 2005), which produce
localized dissipation zones.

We briefly recall the main ingredients of the method. The shallow-water equations
are discretized in the flux-form on a regular grid within the framework of the
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Figure 8. Isolines of the fluid depth in the (x, y)-plane: the contours h = [0.1, 0.2, 0.3,
0.4, 0.5] are shown. The initial amplitude of the perturbation is 10 % of the maximum depth
of the balanced jet. While the instability develops, the jet breaks into a series of anticyclonic
rotating lenses/vortices of elliptic shape. The calculation domain is periodic in the y-direction.

finite-volume approach. The finite-volume scheme is then fully prescribed by the
choice of the numerical flux function and the treatment of the remaining source terms
associated with the Coriolis force. At each time step and in each direction, the Coriolis
terms are reformulated following the apparent topography method first introduced
by Bouchut et al. (2004). The numerical flux function is associated with a relaxation
solver adapted to treat topography, as proposed by Audusse et al. (2004). This choice
of the numerical flux function ensures the ability of the numerical procedure to
compute solutions of the shallow-water equations even in the case of terminating
depth. The advantage of the scheme is that correct Rankine–Hugoniot conditions
guaranteeing the decrease of energy across the shocks are automatically satisfied by
the method, i.e. numerical viscosity is indeed a dissipation. The numerical simulations
presented hereinafter were obtained with typical resolution 0.05 L and last for a
couple of hours on a personal computer.

4.2. Nonlinear evolution of the most unstable mode

We simulate the fully nonlinear evolution of the instability corresponding to the most
unstable mode, with k =1.116 at Bu =1 (see figure 4). The boundary conditions are
periodic in the meridional direction, with period 2π/k (the results do not change if the
period is changed, see below). The numerical method allows for drying, so we compute
the solution on the [−5, 5] interval in the zonal direction with sponge boundary
conditions. The perturbation of amplitude about 10 % of the maximum height of
the unperturbed configuration was superimposed on the background balanced jet.
The evolution of the height field in the (x, y)-plane is shown in figure 8. After only
a few inertial periods, the instability develops. The jet is pinched, at the same time,
the height of the fluid diminishes and becomes very small at pinch locations. A
reconnection of the streamlines at this location follows (in other words the unstable
boundary waves of figure 5 break), and a series of co-rotating anticyclonic vortices of
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Figure 9. (a) An enlargement of the isolines of the fluid depth in the (x, y)-plane at t = 36
corresponding to the simulation of figure 8: the contours h = 0.01 to 0.5 at the interval 0.02
are shown. Filaments of fluid connect the two neighbouring vortices. (b) Mass flux along the
x-axis across the section y = 2.5 at t = 36.
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Figure 10. Section across y =0.1 of the relative vorticity at t =36, in figure 9. We present
the relative vorticity of the regions with h � 0.01. For shallower h, the discretization errors
strongly affect the vorticity which is calculated using finite differences.

elliptic shape, weakly connected by the zones carrying a very small amount of fluid,
results. A late stage of the evolution is illustrated in figure 9(a) where it is seen that
the vortices are in fact interconnected by the filaments of fluid of small depth. The
mass flux across the filaments at the same moment of time is shown in figure 9(b). The
amplitude of the mass flux is negligible, and thus the overall flow along initial density
fronts is practically disrupted. The vortices hardly interact with each other, apart
from the periods of time when they are aligned, with the major axis oriented along
the direction of the initial jet. However, even when the major axes are aligned, we
observe the values of the mass flux an order of magnitude smaller than in the initial
jet, though an order of magnitude greater than the values presented in figure 9(b).

A section of the relative vorticity across a vortex is shown in figure 10. The relative
vorticity in the vortex core is constant and equal to −1. Outside the core, two zones
of negative vorticity are clearly related to the filaments connecting the vortices (see
figure 9a).

The period of rotation of the vortices is about T = 60f −1. During the whole
simulation, one and a third of a full turn is accomplished. The rotating elliptic vortices
resemble the rodons, the exact isolated elliptic lens solutions with paraboloidal profile
of h (Ripa 1987). We can make a comparison with the period of rotation of a rodon
with the same relative vorticity (−1) and the same eccentricity (≈ 2.174). Such a
rodon has a period of about 7.6f −1 or 36f −1 (there exist two families of the rodon
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Figure 11. (a) A snapshot of the fluid depth distribution at t =93, with the same isolines
as in figure 9. (b) Along-stream section at x = 0. (c) Across-stream section at y = 0. Both
cross-sections are accurately fitted by the parabolic profiles for the main vortex part.
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Figure 12. Time evolution of the total energy, normalized by the initial total energy for the
evolution of the main instability. The events of stronger decrease correspond to the times at
which each vortex interacts with its neighbours when their major axes are aligned.

solutions), which gives substantially faster rotation rates. The explanation of the
difference is apparently related to the collective and transient character of the vortex
structures resulting from our simulation, with rodon-like vortices connected by the
rolling up fluid filaments. The detailed structure of the vortex pattern at the late stage
of the evolution is presented in figure 11. It is seen that the main vortex is indeed
rodon-like with parabolic sections along the main axes, but the amount of fluid in
(reconnecting) filaments is still non-negligible.

The time evolution of the total energy of the system is presented in figure 12.
Remember that in the numerical scheme we are using, the numerical dissipation acts
only in the zones of high gradients (shocks). The slow decrease of energy during the
whole simulation is explained by the presence of the drying zones acting as effective
shocks, on the one hand, and by the fact that it is easy to generate micro shocks
(‘shocklets’) in the shallow regions of the fluid close to drying. The resulting energy loss
is non-negligible during the simulation, but stays sufficiently small (less than 10 %). At
times t =43 to 50 and t = 73 to 81, events of stronger dissipation take place at times
when vortices enter in contact (i.e. when their major axes are aligned). The perturba-
tion created at the periphery of the vortex owing to this interaction, then propagates
along the vortex boundary forming shocklets, and dissipates. A snapshot of the spatial
distribution of the dissipation rate at the moment of contact between the neighbouring
vortices is presented in figure 13(a). Dissipation due to shocklets is presented in figure
13(b) and shows that the dissipation rate is ∼ 50 % smaller than the dissipation rate
due to reconnection of filaments, but is of the same order of magnitude.

We performed similar experiments with domains of computation of different sizes
in the meridional direction, and found that previous results are robust: the most
unstable mode from the first instability zone, satisfying the periodicity condition,
develops in a similar way.
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Figure 13. Spatial distribution of the dissipation rate superimposed on the isolines of the
fluid depth (from h = 0.01 up by step of 0.05). (a) At t = 43, dissipation is due to reconnections,
regions were values of the dissipation rate are between 0.01 and 0.0144 (the maximum value)
are shaded. (b) At t = 66, dissipation is due to shock dissipation, regions where values of the
dissipation rate are between 0.004 and 0.0047 (the maximum value) are shaded. Dissipation
rate is calculated as the deviation from the energy balance in each cell per time-step, in
non-dimensional units.

At Bu �= 1, the process is qualitatively similar. We performed simulations with
higher values of the maximum growth rate (Bu > 1): the instability develops faster
and the rotation rate of the vortices is faster, but there are no significant departures
from the described Bu= 1 scenario. Simulations with lower values of the maximum
growth rate (i.e. with Bu < 1) lead to a similar development of the instability as in
the Bu = 1 case but with a longer time scale and with a slower rotation rate of the
vortices.

4.3. Nonlinear evolution of the modes from the second instability zone

We then simulated the nonlinear stage of the instability corresponding to higher-
wavenumber modes, such as the mode presented in figure 6(a). It should be
emphasized that this mode, as well as even higher-k unstable modes (see figure 6b)
has high gradients close to the free streamlines, i.e. at the zones of vanishing depth,
and thus is likely to be damped owing to dissipation (as already said the micro
shocks, and hence dissipation, are expected in the zone close to the free streamlines).
Indeed, we observed a rapid energy decay at the initial stage of the simulation, see
figure 15, and had to start with considerable amplitudes of the perturbation (≈ 0.2
to be compared to ≈ 0.1 in the simulations of the most unstable mode above), in
order to observe noticeable effects. We present in figure 14 the nonlinear evolution of
the mode of figure 6(a) superimposed on the balanced flow. The boudary conditions
are periodic in the meriodional direction, with period 2π/2.77. We can see a drastic
difference with the previous case of the main instability mode. No spatio-temporal
reorganization of the mean flow takes place owing to the rapid dissipative saturation
of the instability. The asymmetry of the unstable mode with its high gradients at the
right-hand boundary leads to almost complete disappearence of the perturbation at
the right-hand boundary, whereas at the left-hand boundary it survives at the initial
level. The energy loss in the simulations presented in figure 15 is much more rapid than
in the case of the main instability mode (see figure 12), happening mainly during the
first 10 inertial periods, which explains why the growth is almost immediately arrested.
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Figure 14. Isolines of the fluid depth in the (x, y)-plane for nonlinear evolution of the insta-
bility from the second zone: the contours h = [0.01 , 0.2 , 0.3 , 0.4 , 0.5] are shown. The
initial amplitude of the perturbation is 20 % of the maximum depth of the balanced jet. The
perturbation is wiped out by dissipation at the right-hand free boundary, where the initial
unstable mode had the strongest gradients (see figure 6a). The growth is saturated owing to
the dissipation at the left-hand boundary, leading to an asymmetric pattern yet close to the
initial configuration without significant changes of the mass flux accross the flow, unlike the
case of the most unstable mode. The calculation domain is periodic in the y-direction.
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Figure 15. Time evolution of the total energy for the instability from the second zone,
normalized by the initial total energy. The most significant energy loss takes place at the first
10 inertial periods.

Figure 16 shows the spatial distribution of the dissipation for the initial stages of
the evolution of the instability from the second zone. The dissipation is concentrated
in the rightmost and leftmost zones of high gradients of the unstable mode with
pronounced left–right asymmetry, which explains the eventual disappearence of the
perturbation at the right-hand boundary. Note that practically all of the dissipation
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Figure 16. Spatial distribution of the dissipation rate (black) superimposed onto the isolines
of the fluid depth (grey) for the initial stage of the simulation of figure 14. Zones of the
dissipation rate exceeding 6 % of its maximum value are shown.

takes place in the highlighted regions. A similar picture is expected for the unstable
modes from the third and fourth instability zones owing to the similar spatial structure
of the modes.

Thus, shorter-wavelength modes from the second, third and fourth zones of
instability, if excited, are unable to change the structure of the background flow
in contradistinction to the main instability mode. This means that in the context of
long-time nonlinear evolution of the coupled fronts, the only relevance of these modes
is to provide a dissipative sink of energy.

5. Summary and conclusions
We thus revisited the linear stability of the geostrophically balanced coupled

density fronts in the reduced-gravity rotating shallow-water model and extended
the previously known results to the case of non zero-PV. The flow does not satisfy the
stability criteria of Ripa (1983), and we have shown that at any Burger number, it is
unstable to perturbations in finite intervals of wavenumbers starting from zero, which
are intertwined with stability zones. The wavenumber associated to the maximum
growth rate of the instability decreases whereas the Burger number increases, whereas
the maximum growth rate itself increases. The detailed structure of the unstable
modes, important for understanding their nonlinear evolution, was established. At
the same time we demonstrated the capability of the collocation method to efficiently
treat complicated configurations with a continuum of critical levels.
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The nonlinear evolution of the unstable modes was then investigated with the help
of high-resolution numerical simulations, allowing us to resolve the fine-structure
details of the dynamics. The main instability was shown to develop by pinching
the fronts and forming a row of clockwise rotating elliptic vortices with a parabolic
form of the interface similar to the (isolated) exact rodon solutions. The vortices are
interacting weakly through the fluid filaments connecting them. Their interaction is
more pronounced when the major axes of the vortices are aligned in the direction of
the initial jet, leading to enhanced dissipation in the inter-vortex regions. The energy
continues to decrease slowly even after a hundred inertial periods meaning that the
relaxation towards the (still unknown) adjusted state is very slow. It should be noted
that formation of a sequence of elliptic vortices during nonlinear evolution of a
zero-PV circular jet was reported in the experiments of Griffiths et al. (1982). Yet, the
high-resolution numerical simulations allow us to add quantitative and qualitative
details, such as measures of fluxes, vorticity, or position of the enhanced mixing zones.

The second-zone instabilities were shown to be subject to the dissipative damping
at the initial stages of the evolution owing to the specific spatial structure of the
corresponding modes with high gradients concentrated in the outcropping regions.
They cannot therefore reorganize the flow, unlike the main unstable mode.

We also provide evidence (see the Appendix), that although the structure of the
main unstable mode is sensible to the profile of the mean shear flow, the growth
rates and position of the main instability zone on the wavenumber axis, as well as
nonlinear evolution of the instability are not. This result is consistent with the general
analysis of Griffiths et al. (1982).

Finally, it should be mentioned that linear stability results for zero-PV
configurations in the two-layer rotating shallow-water model were obtained by
Paldor & Ghil (1990). In the most realistic, in the oceanic context, case of a thick
upper (lower) layer for outcropping (incropping) fronts the instability zones and
growth rates are close to the one-layer ones discussed above. Significant differences
appear, however, at relatively thin second layers with the appearance of short-wave
instabilities having growth rates higher than the ‘main’ long-wave instability. They are
presumably Kelvin–Helmholtz (KH) like, and their presence may considerably change
the nonlinear evolution scenario. It should be stressed that although it is relatively
easy to analyse linear stability by the collocation method in this case, the nonlinear
simulations in the presence of KH-like instabilities do pose a problem because, as is
well known, the two-layer shallow-water equations change type (hyperbolic to elliptic,
see e.g. Zeitlin 2007). We plan to give a thorough analysis of the two-layer case
elsewhere.

Appendix. A resumé of the linear and nonlinear analysis of coupled fronts with
smoothed outcropping

Following a suggestion of an anonymous referee, we present below a brief account
of linear and nonlinear analysis of a configuration where the free boundaries are
approached at zero slope of the free surface, to be compared with finite-slope
outcropping fronts. The height and velocity profiles in non-dimensional terms are
chosen as follows in the interval (−1, 1):

H̃ (x̃) = 1
2
(1 + cos πx̃),

Ṽ (x̃) = −Bu(π/2) sin πx̃,

}
(A 1)

and are both zero outside this interval.
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Figure 17. The main instability zone for the configuration (A 1) as obtained by the
collocation method. Re(ω) = 0 throughout the zone.
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Figure 18. The structure of the most unstable mode for the configuration (A 1) with
zero-PV as obtained by the collocation method.

As is easy to see, this profile is not stable according to Ripa’s criterion. The linear
stability analysis of this configuration by the collocation method along the lines of the
main text above gives the instability diagram for the most unstable modes presented
in figure 17. The typical shear was purposely taken to be the same as for the parabolic
flow at zero-PV, which corresponds to Bu= 2/π in (A 1). Although the quantitative
details are somewhat different, the resemblence with the main instability zone for
the parabolic jet is striking. The structure of the most unstable mode presented in
figure 18 is, unsurprisingly, different from that for the parabolic profile. It has a more
complicated structure with multiple extrema which complicates the filtering of the
pseudo-modes. However, if this mode is superimposed onto the basic flow (A 1), the
resulting nonlinear evolution displayed in figure 19 is qualitatively and quantitatively
close to that presented in figure 8. This indicates that nonlinear evolution of the main
instability with its typical reorganization of the flow into a system of co-rotating
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Figure 19. The nonlinear evolution of the configuration (A 1) with zero-PV perturbed by the
mode of figure 18.

elliptic vortices is robust and not sensitive to the details of the mean flow profile,
provided the typical shear is the same.
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